by Bhanu (@bkamapantula) on Thursday, 31 August 2017

+7
Vote on this proposal
Status: Submitted
Technical level
Intermediate

Abstract

Autolysis is a domain-agnostic solution that solves pattern-based behavioral problems. At its core, Autolysis uses Groupmeans – a statistical technique that is designed to identify the impact of groups over metrics or vice-versa. An open source version with a friendly license is hosted at https://github.com/gramener/autolysis and a web interface is available upon request. Text narratives that augment the statistical analysis forms a key aspect of interpreting results in a business context. I will discuss the challenges in setting up the technology stack and building a narrative engine using templates and retaining necessary context.

Outline

Problem

What do these questions have in common?
1) Which of my channels is fetching me the most viewership? – Media
2) Which segment of customer will most likely want to buy expensive watches? – Retail
3) How is the customer demographics impacting the loan repayment? – Banks

All the questions fall under a similar pattern of questions: what is the impact of a metric on a group or vice-versa. Autolysis is a domain-agnostic solution Gramener built to solve pattern-based behavioral problems and where minimal human intervention is necessary to interpret the analytical results.

Technology stack

I will discuss the technology stack setup behind Autolysis web version which is built using Gramex – a Gramener data and web server which is stacked on python – and web sockets.

Text Narratives

Text narratives which retain insights, context, statistical relevance and augment the data analysis are an important aspect of explaining results. I will discuss the challenges involved in automating data analysis and smart text narration.

Requirements

No hardware/machines required

Speaker bio

I am interested in how automation impacts our daily lives. I work at Gramener as data scientist post my PhD at the Virginia Commonwealth University and a short post-doc at the University of Wisconsin-Madison.

I am interested in civic technology, automated learning, mapping for humanity, data journalism.